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Abstract
Image segmentation is a valuable tool for visual image data 
inspection of semiconductor device structures. For the large 
amounts of data provided by recent advancements in automated 
scanning electron microscope (SEM) and focused ion beam-
scanning electron microscope (FIB-SEM) data acquisition, 
automatic segmentation becomes indispensable to fully 
exploit the information contained in the data in automated 
characterization workflows. Using two exemplary FIB-SEM 
tomography datasets, we explored artificial intelligence based 
image segmentation using only a minimum amount of training 
images annotated by a human user.

Introduction
SEM images of semiconductor device structures are usually 
analyzed manually by experts using their specialist knowledge 
for identification and correct measurement of certain reference 
structures, or for detection and interpretation of defects. This 
approach can hardly be scaled to analyze a larger number of 
images and features than a human user can process. This is 
especially true for FIB-SEM tomography image series.

High spatial resolution 3D imaging of the interior of semicon-
ductor devices by FIB-SEM tomography can be helpful for  
failure analysis, as it often provides better insight into a  
failure mechanism than cross-sectional 2D imaging alone.  
It also provides process engineers with clear visual feedback.[1,2] 
Defect signatures such as material patches remaining from 
previous process steps, misalignments, or cracks, and how 
they relate to their surroundings can be inspected in FIB-SEM 
tomography datasets by scrolling through the stack of 2D images, 
or by extracting virtual slices from it at a desired position and 
orientation to inspect structural details. However, this approach 
defeats the major advantage of 3D imaging, the ability to freely 
inspect the different device structures from any viewing angle  
in a 3D visualization to assess their spatial relationships. 

A simple such 3D visualization can be generated by dynamically 
calculating projection images from the whole image stack in the 
required orientations and selecting some intensity-to-opacity 
relation. However, assessing all detail present in the dataset from 
projections is very difficult. Often, components that are spatially 
separated overlap with others in the projection image, making 
it difficult to distinguish them and to accurately determine their 
shape and position. 
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Figure 1  (a) Single slice image from a FIB-SEM tomography dataset of a SiC MOSFET.  
(b) Same image showing an attempt of conventional grey value threshold 
segmentation of doping area P1.     
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Figure 2  Projection image calculated from the SiC MOSFET dataset.
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A corresponding approach in automatic image segmentation  
is the use of trainable segmentation. It has been used for  
defect segmentation [4] and reverse engineering.[5]  These artificial 
intelligence (AI) methods learn domain knowledge by training a 
segmentation model from pixels labeled by an expert in a training 
dataset, then applying the model to segment other datasets 
acquired under the same conditions. In practice, labeling pixels 
consists of marking the target structures in the image using a 
suitable input device such as mouse, touchscreen, or graphics 
tablet. We refer to this process as annotating images. The model 
may use an artificial neural network or other machine learning 
algorithms to decide which pixels belong to which features.

AI is a term that refers to a wide range of intelligent behaviors 
exhibited by computers. Within the field of AI, there is a subset 
called machine learning (ML), which refers to methods where 
computers can learn and improve without explicit programming 
for each task. Deep learning (DL) is a further subset of ML that 
utilizes neural networks. These networks consist of interconnected 
nodes and layers that mimic the information encoding and 
decoding processes of the human brain. Each node, or neuron, 
focuses on a specific aspect of the data being processed.

Figure 3  Left column: Result of a conventional segmentation attempt to separate 
three different dopant regions. Right column: Result of the few-shot AI segmentation. 
(a and b) N region, (c and d) P1 region, (e and f) P2 region.

Figure 4  EDX elemental maps obtained from the SiC MOSFET cross-section after  
FIB-SEM tomography acquisition.

To display individual device components separately and  
without being overlaid by other components in a 3D FIB-SEM 
tomography data set, they must be clearly separated from each 
other. Furthermore, unique separation of different components  
in the 3D dataset is prerequisite to calculating their volume 
fractions or other quantitative geometrical structure properties. 
In the 2D case, the same applies to calculating area fractions, for 
example to calculate grain size distributions or to automatically 
measure layer thicknesses.

The process of assigning each pixel or voxel to a unique  
class, each class corresponding to one or a set of individual 
components in a 2D or 3D image dataset is called image 
segmentation. Segmentation by a human operator manually 
marking the structures of interest in datasets of hundreds or 
thousands of images is prohibitively expensive. Thus, automatic 
segmentation is required for productive use of the method. 
Conventional automatic segmentation assigns image pixels 
to unique classes according to their grey values by simple 
thresholding with optional filtering in pre- or post-processing,  
or by more advanced clustering algorithms that consider  
statistical properties of the pixel neighborhood.[3] 

When manually segmenting features in SEM images, human 
operators do not only use grey values to decide which structural 
feature a pixel belongs to, but also their expert ability to identify 
what the feature looks like under the imaging conditions used.  
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Figure 5  (a) One slice from the SiC MOSFET dataset. (b) Annotations manually drawn 
in the image to define the different components to be segmented. (c) Segmentation 
result on the same slice. (d and e) First slice of the dataset and its segmentation,  
(f and g) Last slice and its segmentation.

In DL, chains of multiple neurons work together to learn and  
solve complex problems. While individual neurons cannot provide 
solutions on their own, their collective efforts contribute to 
accurate predictions in various domains. DL has demonstrated 
success in tasks such as biomedical image segmentation, image 
classification, and shape recognition for computer vision applications.

Convolutional neural networks (CNNs) are a type of DL neural 
network commonly used in image processing tasks. They are 
particularly effective in computer vision problems where there is a 
correlation among adjacent pixels in an image. Unlike considering 
the entire image at once, CNNs utilize small regions or patches 
that are moved over the image. This approach allows for localized 
analysis, leading to improved accuracy and efficiency. 

Figure 6  (a) One slice from the SiC MOSFET dataset. (b-e) Same slice with segmentation 
result obtained from using 8, 12, 16 and 20 annotated images for model training.
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One specific CNN architecture that has gained popularity in image 
segmentation problems is the U-net. Its success can be attributed 
to its ability to achieve remarkable results even with limited 
annotated inputs. The U-net architecture has been widely adopted 
due to its effectiveness in segmenting images and its potential 
for various applications.[6]  Recent progress in this field made it 
possible to significantly reduce the amount of training images  
that need to be annotated by the user. Often it is sufficient to use 
only several individual images for training (“few-shot” learning).  
 
In this paper, we present few-shot AI semantic segmentation 
applied to FIB-SEM tomography datasets acquired from two 
different samples. We focused on investigating what the minimum 
number of manually segmented images would be to obtain a good 
segmentation, as well as how well such a segmentation model 
will generalize to segment FIB-SEM tomography images recorded 
from the same sample but using secondary electron (SE) versus 
backscatter electron (BSE) detection, different signal-to-noise  
ratio (SNR), and different FIB-SEM instrument configurations.

Materials and Methods
The FIB-SEM tomography datasets used for segmentation were 
acquired from a SiC MOSFET power device (320 images, 20 nm  
pixel size, 30 nm slice thickness, volume size 9.5 x 3.1 x 9.6 µm3,  
subset of a dataset from [7]), and from a 5 nm technology node 
SRAM sample (6004 images, 1 nm pixel size, 0.5 nm slice 
thickness, volume size 6.90 x 0.40 x 3.04 µm3). [8]

For the data acquisition, ZEISS Crossbeam FIB-SEM instruments 
with Atlas 3D software were used. See the corresponding 
references for further detail on the data acquisition. After  
tomography data acquisition, energy dispersive X-ray spectroscopy 
(EDX) elemental maps were recorded at 10 kV from the final cross-
section using an Oxford Instruments Ultim Max 170 detector.  
From the SRAM sample, another dataset (1168 images, 1 nm pixel 
size, 2.5 nm slice thickness, volume size 3.21 x 0.29 x 2.92 µm3) 
was acquired on a ZEISS GeminiSEM 560 with Ion-sculptor FIB 
column (“L-shape Crossbeam”). Unlike the conventional 54° angle 
between FIB and SEM columns, this instrument is configured with 
a 90° angle that allows to use smaller working distances. It is also 
equipped with a SEM objective lens optimized for low voltage 
operation. Both features result in higher imaging resolution than 
with a standard configuration. With all datasets, backscatter 
electron (BSE) and secondary electron (SE) images were recorded 
simultaneously using the respective in-column detectors.

The computation intensive AI segmentation model training 
was done with the ZEISS arivis Cloud service that uses a U-net 
with EfficientNet [9] as encoder and Pixelshuffle [10] as decoder. 

Segmentation of the datasets using the trained models, as well as 
conventional segmentation and 3D visualization were done locally 
using the ZEISS arivis Pro software.

Results and discussion
Because of the strong passive voltage contrast (PVC) achieved at 
the imaging conditions used, [7] the SiC MOSFET dataset exhibits 
three different implant zones: A dark N+ region below either end 
of the gates, and two different levels of bright P-well regions with 
a banana-shaped cross-section (hereinafter referred to as N, P1 
and P2 regions). Figure 1a presents one of these images. 

Figure 7  (a) Projection image of the SiC MOSFET dataset. (b) N, (c) P1, (d) P2, (e) Al, 
(f) Ni, (g) TiN, (h) Poly-Si,( i ) SiON segmentations, and( j ) all segments together.
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The dopant regions exhibit a relatively weak, noisy signal, and 
there is no clear separation between different groups of pixels 
belonging to different doping regions. Grey values of the same 
range as in a dopant zone can also be found in other parts of the 
dataset that do not represent doping zones. Beyond that, the 
dataset contains image artifacts such as grey value fluctuations 
originating from local sample charging, shadowing effects due to 
trench walls adjacent to the imaged cross-section, and residual 
vertical FIB milling artifacts (“curtaining”). Figure 2 shows a 
projection image of the dataset. It does not allow to assess  
shape and extent of the doping regions and their relationship  
to the overlying structures.

Achieving unambiguous segmentation of the three different 
doping levels using pixel grey value based segmentation was not 
possible. This is illustrated in Figure 1b, in which an attempt was 
made to segment the P1 dopant area by grey value thresholding. 
It is not possible to select a grey value range to separate P1, as 
other parts of the image contain pixels that fall into that range 
as well. Then, a more sophisticated conventional segmentation 
attempt was made with the complete dataset. The images were 
pre-processed by removal of inhomogeneous image background 
with a 250 pixel rolling ball filter, followed by 2 pixel median filter 
to decrease noise. Three different pairs of upper and lower gray 
value thresholds were chosen to select only the pixels belonging 
to either N, P1 or P2. The result is that pixels far away from the 
actual doping zones end up being included in the segmentation, 
obscuring the actual zones of interest, and rendering 3D 
visualization useless (Figure 3a, c, and e).

For AI segmentation of the SiC MOSFET dataset, eight classes were 
annotated: The three different doping zones N, P1 and P2 and five 
distinct components identified from the EDX maps shown in Figure 4  
(Al, Ni, TiN, Poly-Si and SiON) were manually annotated by an 
expert user in the SE images. The BSE images were not considered 
here, as they do not show PVC. Figure 5b shows one slice with 
annotations to illustrate this. Areas not belonging to either of these 
were annotated as background. To assess how many images need 
to be annotated to achieve a good segmentation, first 8 images, 
then 12, 16, and finally 20 of the 320 images were annotated before 
training the model on the annotations. The default training time 
suggested by the software was used, we did not investigate the 
effect of increasing the training time. The segmentation obtained 
after training with eight annotated images showed only minor 
misclassifications (Figure 6b). These were absent when training 
with 12 annotated images (Figure 6c). Training with 16 or 20 
annotated images showed no further improvement, apart from 
minor variations in the resulting segment shapes (Figure 6d, e). 
This indicates that indeed model training on only a few annotated 
images is sufficient for artifact-free segmentation of this dataset.

Figure 8  Surface rendering of a FIB-SEM tomography dataset of a 5 nm technology 
node SRAM. (a) Projection. (b) Conventional segmentation of the transistor fins.  
(c) Few-shot AI segmentation of the fins. (d) Few-shot segmentation of fins (green), 
contacts (pink), gates (brown), M1 (purple), SD (white).
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The model trained on 20 annotated 
images was finally used to segment all 320 
images. The result is a clean segmentation 
of the three dopant zones and of the 
five components. Figure 5c-g shows the 
segmentation results for three different 
slices, representative for the whole 
dataset. Figure 3 presents a side-by-side 
comparison of 3D surface renderings 
of the N, P1 and P2 doping zones AI 
segmentation (b, d, f) to the conventional 
segmentation result (a, c, e), while Figure 7 
shows an overview of all eight segmented 
classes. In contrast to the conventional 
segmentation, the AI segmentation 
approach provides a clear separation of  
the different device components.

For the 5 nm SRAM FIB-SEM tomography 
datasets, six classes were annotated:  
Fins, gates, epi-source/drain (SD), contacts, 
metal 1 (M1), and background. Starting 
with the standard 54° FIB-SEM dataset, 
we used the same approach of increasing 
numbers of annotated images to assess 
how many of them are required for good 
segmentation. Although the images were 
quite noisy due to the relatively short  
pixel dwell time used for acquisition, 
model training on only two annotated 
images was already sufficient for a 
segmentation of the SE data with only 
minor misclassifications, and on six 
annotated images for the BSE part.  
Figure 8 shows 3D renderings of a  
1.6 x 0.4 x 0.6 µm3 subset of the SE part  
of the data, a segmentation of the 
transistor fins by grey value thresholding 
and the AI segmentation of the fins based 
on two annotated images, and all six AI 
segmented classes together. Comparing 
the conventional and AI fin segmentation, 
the superiority of the AI method becomes 
obvious. More annotated images were 
then added to the training, up to 11 each 
for the SE and BSE part, but no further 
improvement was observed with more 
than eight annotated images.

Figure 9  2.45 x 0.40 µm2 sections of a BSE (a) and an SE slice (c) from the 5 nm SRAM dataset and their  
corresponding AI segmentations (b, d). Slices obtained by averaging five neighboring slices of the original BSE  
(e) and SE (g) data, and their corresponding AI segmentations (f and h). Blue: Fins, Green: Gates, Orange: SD,  
Yellow: Contacts, Red: M1.
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SE and BSE images render different 
structural components of the sample in 
a different way, which leads to slightly 
different manual annotation results. We 
reckoned that combining annotations 
obtained from SE and BSE images to train 
both dataset parts is advantageous, as 
it would reduce training bias originating 
from annotating only one kind of images. 

Therefore, and to assess if it is even 
possible to use a single model for 
simultaneous segmentation of both the 
SE and the BSE data, the two image 
stacks were merged into one, and the 
annotations from the 11 annotated SE and 
11 (different) annotated BSE slices were 
used to train a new model on the merged 
data. The segmentations thus obtained 
showed no obvious difference to the 
separate SE and BSE segmentations.

The original purpose of recording the 
SRAM data with short pixel dwell time and 
very small slice thickness was to minimize 
rift related image distortions at acquisition 
time, and to then calculate a moving 
average trough the image series to get  
a reduced, distortion-free dataset with 
good signal-to-noise ratio (SNR).[8]  To 
assess the segmentation performance 
of the model trained so far on such a 
slice averaged dataset, moving five-slice 
averages were calculated both on the 
SE and BSE parts, resulting in a reduced 
dataset with 2.5 nm slice thickness and 
increased SNR. Segmentation of the 
averaged images with the previous model 
was not good enough but could be 
improved by adding only two annotated 
images each from the averaged SE and BSE 
images to the training. Figure 9 shows the 
segmentation results on representative 
individual BSE and SE slices. Segmentation 
accuracy of fins and gates improved with 
the better SNR of the averaged images, 
while the result for other components  
was the same.

Finally, we were interested in finding out 
whether the same model trained on the 
data acquired with the standard FIB-SEM 
configuration generalizes well enough to 
be suitable for segmenting the L-shape 
dataset. Due to higher resolution and 
different acceptance properties of its 
electron detection system, both SE and 
BSE images acquired with this instrument 
look different than those recorded with 
the standard FIB-SEM. They contain more 
detail and render the different device 
components in a slightly different way. 
As expected, with the existing model the 
result was an incomplete and erroneous 

segmentation. However, adding only eight 
annotated SE and eight BSE images was 
enough to improve the segmentation 
of the L-shape dataset to a usable level. 
Figure 10 shows the results on four 
representative slice images. Corresponding 
3D renderings are given in Figure 11. 
The gates are better segmented in the 
BSE images, while the fins are better 
segmented in the SE images. The other 
components are equally well segmented in 
both parts. We interpret this to mean that 
still more annotations and, possibly, more 
training time is needed to further improve 
the segmentation of this dataset.

Figure 10  2.45 x 0.29 µm2 sections of two BSE (a, c) and two SE slices (e, g) from the 5 nm SRAM L-shape dataset, 
and their corresponding AI segmentations (b, d and f, h). Blue: Fins, Green: Gates, Orange: SD, Yellow: Contacts,  
Red: M1.
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Conclusions
Recent years have witnessed significant 
advancements in automated SEM and 
FIB-SEM image acquisition protocols. 
Notably, software solutions have enabled 
the acquisition of large multi-detector 
FIB-SEM tomography datasets along with 
3D EDX maps. This progress is made 
possible by the automatic adjustment 
of parameters when transitioning from 
imaging to elemental analysis. Moreover, 
this approach includes the capability to 
automatically capture high resolution 
mosaic images of large specimen areas 
using customized recipes. Consequently, 
larger areas can be investigated with 
higher resolution.

Segmentation is often the first step in 
drawing manufacturing process related 
conclusions from such data. Segmented 
images allow to quantify geometrical 
properties of the different device 
structures, such as their volume fractions, 
deviations of their shapes from the target, 
or layer thicknesses. They provide a way 
of automatically locating candidates for 
defects by detecting outliers within a 
segmentation class. In contrast to the 
conventional segmentation approach, 
the AI based results presented in this 
paper were largely free from incorrect 
segmentation due to unclear pixel 
assignment and image artifacts. Therefore, 
more statistically relevant data become 
available in a shorter time by incorporating 
AI based image segmentation models in 
the data processing workflow, and it can 
potentially be fully automated.

Exploiting cloud-based services for 
training a DL segmentation model, while 
calculating the actual data segmentation 
with the trained model on a local work-
station, as it was carried out here, has 
several advantages. First, modern cloud-
based solutions provide the possibility  
to run batch processes in parallel, 

distributed computing resources making 
this a scalable approach that can minimize 
computation times and cost per dataset. 
Second, this approach allows physical 
analysis engineers to not rely solely on 
their local workstation resources that limit 
the overall throughput. When performed 
in the cloud, the segmentation process 
can be run in the background, so that 
local workstations can be used for other 
purposes. Third, data confidentiality 
concerns can potentially be dispelled 
by performing the predominant part of 
the model training in the cloud on data 
obtained from non-confidential devices 

that are built similarly to the confidential 
ones, followed by comparatively short local 
re-training of the model with additional 
annotations made on the confidential data.  
We have shown a similar approach by 
training a model on data acquired on a 
particular type of FIB-SEM, then re-training 
the same model on data obtained from 
a different type. If this approach can 
be generalized to datasets from similar, 
but not identical devices remains to be 
explored.

Figure 11  Projection rendering of the L-shape dataset (BSE part, a), and 3D renderings of fins (b), gates (c),  
SD (d), contacts (e), M1 (f), all together (g, h). (c, d, e, f, and g) From the BSE segmentation; (b and h) From the  
SE segmentation. a, g, h cut at an angle for better visibility of the different layers.
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